Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yu-Mei Dai,^{a,b}* Hui-Ying Shen^a and Jin-Feng Huang^a

^aCollege of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, People's Republic of China, and ^bThe State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: dym@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.002 Å R factor = 0.043 wR factor = 0.120 Data-to-parameter ratio = 12.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Terephthalic acid-1,3-di-4-pyridylpropane (1/1)

The title compound, $C_{13}H_{14}N_2 \cdot C_8H_6O_4$, was obtained by the hydrothermal reaction of CuCl with 1,2,4,5-benzenetetracarboxylic acid and 1,3-bis(4-pyridyl)propane. The 1,3-bis(4pyridyl)propane molecule lies on a crystallographic twofold axis, and terephthalic acid is on an inversion centre. In the crystal structure, strong intermolecular $O-H\cdots N$ hydrogen bonds between the components lead to the formation of zigzag chains extending along [101]. The chains are linked through intermolecular $C-H\cdots O$ hydrogen bonds.

Comment

The construction of inorganic coordination polymeric complexes has developed rapidly in recent years, owing to their interesting molecular topologies and crystal-packing motifs (Hagrman *et al.*, 1999; Yaghi *et al.*, 1998) along with potential applications as functional materials (Evans *et al.*, 1999; Fujita *et al.*, 1994). 1,2,4,5-Benzenetetracarboxylic acid (H₄btec) attracted our attention for the process of constructing coordination polymers. During the process, a hydrothermal decarboxylation reaction was observed and the H₄btc ligand was converted *in situ* into terephthalic acid by loss of two carboxyl groups. We report here the synthesis and crystal structure of the title compound, (I).

The asymmetric unit contains one half-molecule each of terephthalic acid and 1,3-bis(4-pyridyl)propane; the 1,3-bis(4-pyridyl)propane molecule lies on a crystallographic twofold axis, and terephthalic acid is on an inversion centre (Fig. 1). In the crystal structure, $O-H\cdots N$ hydrogen bonds between carboxylic acid groups and N atoms of the pyridine rings link the molecules into zigzag chains along [101] (Table 1). Intermolecular $C-H\cdots O$ hydrogen bonds link the chains into a three-dimensional network (Fig. 2).

Experimental

CuCl (0.10 g, 1 mmol), H₄btec (0.127 g, 0.5 mmol) and KOH (0.06 g, 1 mmol) were mixed in water (15 ml) and heated at 433 K for 3 d in a sealed 25 ml Teflon-lined stainless steel vessel under autogenous pressure. Cooling to room temperature at 5 K h^{-1} produced yellow

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 12 September 2005 Accepted 20 September 2005

Online 28 September 2005

block crystals, which were collected, washed with water and dried in air

Crystal data

 $C_{13}H_{14}N_2 \cdot C_8H_6O_4$ $M_r = 364.38$ Monoclinic, C2/c a = 23.270 (2) Å b = 4.7000 (2) Å c = 18.9600 (19) Å $\beta = 119.440 (3)^{\circ}$ V = 1805.9 (3) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector	2063 independer
diffractometer	1811 reflections
φ and ω scans	$R_{\rm int} = 0.020$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -30 \rightarrow 30$
$T_{\min} = 0.967, T_{\max} = 0.981$	$k = -5 \rightarrow 6$
6545 measured reflections	$l = -13 \rightarrow 24$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ wR(F²) = 0.120 S = 1.092063 reflections 163 parameters All H-atom parameters refined Cell parameters from 1874 reflections $\theta = 3.5 - 27.5^{\circ}$ $\mu = 0.09~\mathrm{mm}^{-1}$ T = 293 (2) K Prism, yellow $0.40 \times 0.30 \times 0.20$ mm nt reflections

 $D_{\rm r} = 1.340 {\rm Mg m}^{-3}$ Mo $K\alpha$ radiation

with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_0^2) + (0.0672P)^2]$ + 0.7554P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O1 - H1 \cdots N1 \\ C5 - H5A \cdots O1^{i} \\ C8 - H8A \cdots O2^{ii} \end{array}$	1.06 (2) 0.96 (2) 0.95 (2)	1.53 (2) 2.49 (2) 2.35 (2)	2.5782 (14) 3.2162 (16) 3.2268 (19)	171 (2) 132 (1) 155 (1)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x, -y + 1, -z.

H atoms were located in a difference Fourier map and both positional and isotropic displacement parameters were refined. The C-H range is 0.946 (16)-1.002 (16) Å and the O-H distance is 1.06 (2) Å.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was financially supported by the Foundation of the Ministry of Education of Fujian Province (grant No. JB03131).

Figure 1

The structure of (I). Displacement ellipsoids are drawn at the 40% probability level. Unlabelled atoms in the terephthalic acid and 1,3-bis(4pyridyl)propane molecules are related to labelled atoms in the same molecule by $(\frac{1}{2} - x, -\frac{1}{2} - y, -z)$ and $(-x, y, \frac{1}{2} - z)$, respectively.

Figure 2

The crystal packing of (I), showing the three-dimensional hydrogenbonded (dashed lines) network.

References

- Evans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. Int. Ed. 38, 536-538.
- Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.
- Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Siemens (1994). SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.